GPS-easy!

Shield for Arduino

Arduino-Board Duemilanove (Atmega328)
Arduino-Board UNO (Atmega328)
Arduino-Board Mega2560 (Atmega2560)
"Arduino-Clones"

Manual (Rev. 4)

22.04.2013
Contents

General ... 3
Scope of delivery .. 4
 • Hardware .. 4
 • Software ... 4
System requirements .. 4
 • General ... 4
 • Programming .. 4
Technical specification .. 5
 • General ... 5
 • GSM .. 5
 • Antenna .. 5
 • Stackability (simultaneous use of multiple Shields) ... 6
 • Firmware update of the wireless module Quectel-M95 .. 6
Installation ... 7
 • Hardware ... 7
 • Software ... 7
Initial operation .. 8
 • Library ... 8
 • Programming the Arduino-Board .. 9
Example programs .. 11
 • LEDs ... 13
 • Signals between Arduino and Mainboard .. 14
Schematics / Layouts .. 15
General

Arduino is an open-source physical computing platform based on flexible and easy-to-use hardware and software which is used to for the development of prototypes. The *Arduino* board is composed of a microcontroller with several digital and analog inputs and outputs and interfaces. Including JAVA based development environment, based on processing and other open-source software. Developed programs can directly by loaded to the *Arduino* board.

Arduino has a great fan community.. and of course their own website with many example applications as well as an extensive forum → http://www.arduino.cc/

To extend the functionality of the Arduino board and to control other devices, so-called Shields (extension boards) are plugged to the Arduino board. By using the *GSM-easy! - Shield*, it is possible to use mobile communication . For example, Voicecall, SMS, Internet (TCP/IP, HTTP, PING, etc.). Alarms and measured data can be sent or switching or similar information can be received. The *Arduino* board in combination with the *GSM-easy! - Shield* is used individually and can be customized to your needs. The *Arduino* board communicates with the *GSM-easy! - Shield* over a serial interface.

Please read this manual completely and carefully before initial use. It describes correct use and includes important instructions for the installation of the *GSM-easy! - Shield* with the *Arduino-Board*. The manufacturer accepts no liability for damage resulting from improper use. All guarantee claims are then void.
Scope of delivery

Hardware
Everything there? The delivery of a **GSM-easy! - Shield** unit contains:
- the **GSM-easy! - Shield**
- this manual (as download)
- the *Arduino* board (optional)
- one mobile radio antenna (optional)
- power supply (optional)

Software
Software pack (available for download) containing:
- A library to use the **GSM-easy! - Shield**
- Example programs for using Voice, SMS, E-Mail, HTTP, FTP, Ping, etc.
- Datasheets and "Application Notes" for the wireless module *Quectel M95*
- *Arduino* board / **GSM-easy! - Shield** design and schematics

System requirements

General
- *Arduino* board "Duemilanove" (Atmega328) / *Arduino* board "UNO" (Atmega328) / *Arduino*-Board "Mega2560" (Atmega2560)
- SIM card (pre-paid or contract)

Programming
- *Arduino* development environment
- USB interface
- Windows / Mac OS X / Linux: 32 or 64 bit
Technical specification

General

- Operating voltage: 5VDC ... 9VDC
- 14 (Duemilanove/Uno) or 54 (Mega2560) digital in- and outputs
- 6 (Duemilanove/Uno) or 16 (Mega2560) analogue inputs

GSM

- Integrated GSM module: Quectel-M95
- internal supply voltage: 4V
- can be operated with pre-paid or contract SIM cards of any provider, no SIM lock
- control via the serial interface (TTL/CMOS level)

Antenna

- antennena connector: SMA
- connectivity for stubby antenna (directly attached) or external antenna (for example magnetic mount antenna) see here
Stackability (simultaneous use of multiple Shields)

The **GSM-easy! - Shield** can be used simultaneously with other *antrax Shields*.

When stacked together, all antrax shields can be switched ON/OFF via an own select line. Thus it is possible that multiple shields can share the few interfaces of one Arduino motherboard, without blocking each other.

antrax shields with stackability technology:

- GSM/GPRS/GPS-Shield
- **GSM-easy! - Shield**
- Iridium-Shield
- OBD2-Shield

Firmware update of the wireless module Quectel-M95

Use the X24 connector of the **GSM-easy! - Shield** in order to perform and transfer a firmware update to the wireless module.
Installation

Hardware

- Place SIM card in the SIM card holder on the \textit{GSM-easy! - Shield}
- Connect mobile radio antenna
- Plug the \textit{GSM-easy! - Shield} on the \textit{Arduino} board. Because of the RF characteristics the \textit{GSM-easy! - Shield} must be placed as topmost shield.
- Connect the power supply to the \textit{Arduino} board or use an USB cable to connect the \textit{Arduino} board with a PC

\begin{quote}
\textbf{NOTE:} The wireless Quectel-M95 module has a dynamic transmission power control. In poor reception conditions, the transmission power is increased accordingly. In this case, a relatively high current is required from the power supply. Please use a sufficiently sized external power supply. The exclusive use of the USB power supply may result in interruptions when sending or "resetting" the wireless module.
\end{quote}

\textbf{CAUTION:} Before inserting/removing the SIM card please switch OFF (de-energise) the \textit{GSM-easy! - Shield} (e.g. interrupt power supply). Otherwise the complete content of the SIM card can be destroyed, which may lead to a fee for exchange by the provider.

Software

If required please load drivers needed by the \textit{Arduino} board from the directory of the \textit{Arduino} development environment.
Initial operation

Library

To make working with the **GSM-easy! - Shield** as simple as possible, a library was developed for this shield.

Please copy the files *gsm_easy.cpp*, *gsm_easy.h* und *keywords.txt* to the "libraries" file of the Arduino development environment (e.g. "c:\arduino-0022\libraries").

The library can be added to the current open program in just 3 clicks. Of course, this library can be changed or extended to your own needs.
Programming the Arduino-Board

The **GSM-easy! - Shield** is always addressed and controlled by the software used on the **Arduino** board. It is very easy to transfer a software to the **Arduino** board with the **Arduino** development environment. The required steps are described here below:

- connect the **Arduino** board with the already plugged **GSM-easy! - Shield** to the PC via USB interface
- please have the drivers installed already
- open the **Arduino** development environment
 - see: file → "Examples"
 - **GSM-easy!**
 - **Example program**
- since the **Arduino** board (despite USB connection) is shown as serial device to the PC, please choose
 - Tools → Serial Port as used interface
- Changes to the example software needed:
 - SIM-Pin (if available)
 - target telephone number
● use the upload button (highlighted in white in this picture) to directly upload the modified program to the Arduino board

● after the message "done" is shown at the lower end of the window the transfer has been completed successfully

● the program is automatically started

NOTE: The USB connection shall now be disconnected and a power supply can be plugged instead.
Example programs

The following example programs are available via download:

GSM_easy_dialvoicecall
- log in to the GSM network
- set up voice call
- send DTMF-tones, as soon as the remote station has answered the call

GSM_easy_recvvoicecall
- log in to the GSM network
- wait for an incoming voice call
- pick up incoming voice call
- respond with a DTMF tone
- end voice call

GSM_easy_sendSMS
- log in to the GSM network
- send an SMS to a telephone number

GSM_easy_recvSMS
- log in to the GSM network
- determine number of existing/stored SMS
- read out latest SMS
- delete all SMS

GSM_easy_sendmail
- log in to the GSM / GPRS network
- set/configure all information to the SMTP server
- set/configure all required e-mail information
- send e-mail

GSM_easy_ping
- log in to the GSM / GPRS network
- send a PING to a server / an IP address

GSM_easy_httpget
- log in to the GSM / GPRS network
- send a HTTP-GET to a specified server (for testing we recommend the antrax - see below)
GSM_easy_ftp
- log in to the GSM / GPRS network
- load a FTP test file from a specified server (for testing we recommend the antrax - see below)

GSM_easy_status
- display all current states
- GSM logged in?
- GPRS logged in?
- current signal field strength
- number of the used base station
- network used
- number of stored SMS

Please visit our [website](#) for further examples
LEDs

There are two LEDS on the **GSM-easy! - Shield**:

<table>
<thead>
<tr>
<th>LED_POWER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>permanently OFF</td>
<td>GSM-easy! - Shield currentless or deactivated</td>
</tr>
<tr>
<td>permanently ON</td>
<td>GSM-easy! - Shield switched on</td>
</tr>
</tbody>
</table>

NETLIGHT (see also "M95_HardwareDesign_V1.2.pdf", page 56)

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>permanently OFF</td>
<td>wireless module inactive</td>
</tr>
<tr>
<td>64 ms ON / 800 ms OFF</td>
<td>wireless module not yet logged in</td>
</tr>
<tr>
<td>64 ms ON / 2000 ms OFF</td>
<td>wireless module is logged in</td>
</tr>
<tr>
<td>64 ms ON / 600 ms OFF</td>
<td>GPRS data transfer in process</td>
</tr>
</tbody>
</table>
Signals between Arduino and Mainboard

For operating the **GSM-easy! - Shield** a total of 5 single signals plus power supply are required:

<table>
<thead>
<tr>
<th>Connector J1</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>serial interface, direction GSM-easy! - Shield ---+ Arduino (default)</td>
</tr>
<tr>
<td>2</td>
<td>serial interface, direction Arduino ---+ GSM-easy! - Shield (default)</td>
</tr>
<tr>
<td>3</td>
<td>alternatively for Pin 1 when using a software interface</td>
</tr>
<tr>
<td>4</td>
<td>alternatively for Pin 2 when using a software interface</td>
</tr>
<tr>
<td>5</td>
<td>PWRKEY (default)</td>
</tr>
<tr>
<td>6</td>
<td>EMERG (default)</td>
</tr>
<tr>
<td>7</td>
<td>GSM_ON (default)</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector J2</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector J3</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>alternatively for signal PWRKEY</td>
</tr>
<tr>
<td>2</td>
<td>alternatively for signal EMERG</td>
</tr>
<tr>
<td>3</td>
<td>alternatively for signal GSM_ON</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+5V</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>Vin</td>
</tr>
</tbody>
</table>
Schematics / Layouts

Please find the schematics und PCB layouts of the module on our website.